KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer.
نویسندگان
چکیده
PURPOSE EML4-ALK is a transforming fusion tyrosine kinase, several isoforms of which have been identified in lung cancer. Immunohistochemical detection of EML4-ALK has proved difficult, however, likely as a result of low transcriptional activity conferred by the promoter-enhancer region of EML4. The sensitivity of EML4-ALK detection by immunohistochemistry should be increased adequately. EXPERIMENTAL DESIGN We developed an intercalated antibody-enhanced polymer (iAEP) method that incorporates an intercalating antibody between the primary antibody to ALK and the dextran polymer-based detection reagents. RESULTS Our iAEP method discriminated between tumors positive or negative for EML4-ALK in a test set of specimens. Four tumors were also found to be positive for ALK in an archive of lung adenocarcinoma (n = 130) and another 4 among fresh cases analyzed in a diagnostic laboratory. These 8 tumors were found to include 1 with EML4-ALK variant 1, 1 with variant 2, 3 with variant 3, and 2 with previously unidentified variants (designated variants 6 and 7). Inverse reverse transcription-PCR analysis revealed that the remaining tumor harbored a novel fusion in which intron 24 of KIF5B was ligated to intron 19 of ALK. Multiplex reverse transcription-PCR analysis of additional archival tumor specimens identified another case of lung adenocarcinoma positive for KIF5B-ALK. CONCLUSIONS The iAEP method should prove suitable for immunohistochemical screening of tumors positive for ALK or ALK fusion proteins among pathologic archives. Coupling of PCR-based detection to the iAEP method should further facilitate the rapid identification of novel ALK fusion genes such as KIF5B-ALK.
منابع مشابه
KLC1-ALK: A Novel Fusion in Lung Cancer Identified Using a Formalin-Fixed Paraffin-Embedded Tissue Only
The promising results of anaplastic lymphoma kinase (ALK) inhibitors have changed the significance of ALK fusions in several types of cancer. These fusions are no longer mere research targets or diagnostic markers, but they are now directly linked to the therapeutic benefit of patients. However, most available tumor tissues in clinical settings are formalin-fixed and paraffin-embedded (FFPE), a...
متن کاملA prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer.
PURPOSE EML4-ALK is a lung cancer oncogene, and ALK inhibitors show marked therapeutic efficacy for tumors harboring this fusion gene. It remains unsettled, however, how the fusion gene should be detected in specimens other than formalin-fixed, paraffin-embedded tissue. We here tested whether reverse transcription PCR (RT-PCR)-based detection of EML4-ALK is a sensitive and reliable approach. ...
متن کاملPerformance of a RT-PCR Assay in Comparison to FISH and Immunohistochemistry for the Detection of ALK in Non-Small Cell Lung Cancer
Patients with lung cancers harboring an activating anaplastic lymphoma kinase (ALK) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR as...
متن کاملDetection of ALK fusion transcripts in FFPE lung cancer samples by NanoString technology
BACKGROUND ALK-rearranged lung cancers exhibit specific pathologic and clinical features and are responsive to anti-ALK therapies. Therefore, the detection of ALK-rearrangement is fundamental for personalized lung cancer therapy. Recently, new molecular techniques, such as NanoString nCounter, have been developed to detect ALK fusions with more accuracy and sensitivity. METHODS In the present...
متن کاملThe use of quantitative real-time reverse transcriptase PCR for 5' and 3' portions of ALK transcripts to detect ALK rearrangements in lung cancers.
PURPOSE Approximately 3% to 7% of non-small cell lung cancers (NSCLC) harbor an ALK fusion gene, thus defining a tumor group that may be responsive to targeted therapy. The breakpoint in ALK consistently occurs at exon 20 and EML4 or other fusion partners, thus driving a strong expression of ALK kinase domain and resulting in an unbalanced expression in 5' and 3' portions of ALK transcripts. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2009